Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nat Biotechnol ; 40(11): 1680-1689, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1890202

ABSTRACT

Fast, high-throughput methods for measuring the level and duration of protective immune responses to SARS-CoV-2 are needed to anticipate the risk of breakthrough infections. Here we report the development of two quantitative PCR assays for SARS-CoV-2-specific T cell activation. The assays are rapid, internally normalized and probe-based: qTACT requires RNA extraction and dqTACT avoids sample preparation steps. Both assays rely on the quantification of CXCL10 messenger RNA, a chemokine whose expression is strongly correlated with activation of antigen-specific T cells. On restimulation of whole-blood cells with SARS-CoV-2 viral antigens, viral-specific T cells secrete IFN-γ, which stimulates monocytes to produce CXCL10. CXCL10 mRNA can thus serve as a proxy to quantify cellular immunity. Our assays may allow large-scale monitoring of the magnitude and duration of functional T cell immunity to SARS-CoV-2, thus helping to prioritize revaccination strategies in vulnerable populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Immunity, Cellular , Polymerase Chain Reaction , T-Lymphocytes
2.
Immunol Rev ; 295 Suppl s1: 4-10, 2020 05.
Article in English | MEDLINE | ID: covidwho-1116789

ABSTRACT

The ongoing outbreak of the novel coronavirus (SARS-CoV-2) infection is creating serious challenges for health laboratories that seek to identify viral infections as early as possible, optimally at the earliest appearance of symptom. Indeed, there is urgent need to develop and deploy robust diagnostic methodologies not only to use in health laboratory environments but also directly in places where humans circulate and spread the virus such as airports, trains, boats, and any public aggregation places. The success of a reliable and sensitive asymptomatic diagnosis relies on the identification and measurement of informative biomarkers from human host and virus in a rapid, sensitive, and inexpensive manner. The objective of this article is to describe an innovative multidisciplinary approach to develop an efficient, inexpensive, and easy-to-use portable instrument (bCUBE® by Hyris Ltd) that can be employed as a surveillance system for the emergency caused by SARS-CoV-2. A solution for Coronavirus testing, compliant with CDC guidelines, is scheduled to be released in the next weeks. In addition, we will describe a workflow and path of an integrated multi-omic approach that will lead to host and pathogen biomarker discovery in order to train the instrument to provide reliable results based on a specific biomarker's fingerprint of SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/instrumentation , Coronavirus Infections/diagnosis , Disease Outbreaks/prevention & control , Mass Screening/instrumentation , Pneumonia, Viral/diagnosis , Animals , Asymptomatic Infections/epidemiology , Biomarkers/analysis , COVID-19 , COVID-19 Testing , Clinical Laboratory Services , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL